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LETTER TO THE EDITOR 

Directed walk models of polymers at interfaces 

M C T P Carvalho and V Privman 
Department of Physics, Clarkson University, Potsdam, NY 13676, USA 

Received 10 May 1988, in final form 29 June 1988 

Abstract. We report analytical studies of the adsorption-desorption transition of polymers 
grafted at a penetrable surface, in the 2D and 3D partially directed SAW models. The 
fraction of adsorbed monomers and the phase diagram of the transition are calculated by 
the transfer matrix method. 

The properties of isolated polymer chains near rigid or penetrable substrates or 
interfaces have been subject to continuing investigations stimulated both by potential 
applications and theoretical interest in novel analytical and numerical techniques 
involved (see reviews by Binder and Kremer (1985), de Gennes (1987), Eisenriegler 
et a1 (1982) and literature surveyed therein), are eventually also efficient for multichain 
systems. In this work we use exactly solvable directed self-avoiding walk (SAW) models 
(Privman et a1 1988) to study polymers interacting with a symmetric penetrable surface 
(line in ZD, plane in 3 ~ ) ,  previously investigated by numerical techniques and scaling 
approach (see Nakanishi (1981), Kremer (1985), Ishinabe (1984) and literature cited 
therein). A continuum field-theoretical model for the asymmetric interface problem 
has been developed by Wang et a1 (1986). 

Experimental realisations of polymers at interfaces (see, e.g., Bloch er a1 1985) 
typically involve two different media-a non-symmetric configuration (studied, e.g., 
by Halperin and Pincus (1986)) which in its critical behaviour at the adsorption- 
desorption transition is reminiscent of an impenetrable substrate. Directed walk models 
are relevant for polymers in anisotropic environments induced, e.g., by a weak flow 
of the solvent parallel to the surface. Experimental realisation of such systems has 
been described by Lee and Fuller (1985). In general, a sharp transition exists between 
the high-coverage (at low temperatures) and low-coverage regimes. The symmetric 
case considered here represents, however, an interesting theoretical limit when there 
is basically no entropy loss when a grafted (attached at one or both ends) polymer 
chain is adsorbed at an attractive surface. Thus the desorption transition cannot be 
induced by temperature increase, but only by making the surface repulsive. This 
theoretical expectation (Hammersley 1982, Hammersley et a1 1982) will be checked 
exactly for directed SAW models. Directed models cannot be used to probe possible 
differences in critical-point exponents for the symmetric and impenetrable surfaces 
(see Hammersley eta1 1982, Kremer 1985, Ishinabe 1984) since they have mostly 
Gaussian-type critical behaviour in both cases (see below, and Privman et a1 (1988)). 
The global description provided by the exact solution is, however, useful especially 
in the adsorbed regime (see Privman et a1 (1988) for further discussion). 

0305-4470/88/211033 +05$02.50 0 1988 IOP Publishing Ltd L1033 



L1034 Letter to the Editor 

For a walk of length L, with 1 steps at the surface, we model the polymer-surface 
interaction by assigning energy 

E/kBT= -Kl (1) 

with K > 0 for the attractive surface case. Thus 

( 2 )  K K'e 

is the Boltzmann factor per adsorbed link (monomer), with K > 1 for attraction and 
O <  K < 1 for repulsion. In the grand canonical ensemble, the partition function is 
given by 

z =  W L K '  
allwalks 

where the fugacity w controls the average chain length, 

a In 2 
aw 

( L ( W ,  K))=W- 

(3)  

(4) 

which increases to ( L )  = 00 as w varies from zero to a model-dependent value, U,( K )  < 1. 
We follow here the notation of Privman et a1 (1988) where it was generally argued 
that the fraction of monomers adsorbed at the surface, P ( K ) ,  is given by 

In 2D, we consider a square lattice of unit spacing in the xy plane. The interacting 
'surface' is the x axis. Similarly, in 3~ a cubic lattice is considered, with the xz plane 
singled out. The walks start at the origin, and are directed along +2. Furthermore, in 
order to avoid unilluminating mathematical complications we consider the restricted 
models where at most one +?, -A +z^ or -2 step is allowed, following each +2 step. 
For each +2, +z^ or -z^ step (link) at y = 0, i.e. on the interacting surface, we assign 
an extra factor K, as defined above, see equations ( 1 )  and (2). (Obviously, there are 
no *2 steps in 2 ~ . )  

The problem is solvable by the transfer matrix method (see Privman et a1 1988). 
Let n = y ( x )  and n'= y ( x ' )  denote the y values of two consecutive +R steps. The 
transfer matrix elements in 2~ are then given by 

In either dimension, the partition function can be obtained via 

W 
w T2 

Z=&+ 
1 - U T  

(see Privman et a1 1988); the uninteresting term 2, accounts for configurations with 
no +2 steps. V and W are column vectors (with (t) denoting the transpose) carrying 
the information on the ends of the chain. For instance, in 2 ~ ,  the end pinned at the 
origin is-accounted for by WO= 1, Wn,o=O. For the other dangling end we select 
Vo = K-' ,  V,,, = 1 .  It can be pinned at the substrate by choosing V,,, = 0, see further 
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below. Extensions to 3~ are straightforward. The partition function 2 in (8) develops 
a singularity for 

1 - wh,,,( U ,  K ) = 0 (9) 
where A,,, is the largest eigenvalue of T. Relation (9) defines w,(K) .  

a bound-state type, 

or a continuous oscillating linear combination of eiiqn (with different coefficients for 
n 3 0 and n s 0). By direct substitution, one finds that the conditions for the bound 
state are 

In 2 ~ ,  the right eigenvector (column vector) ?, of T defined in (6), can be either 

n P>O (10) qpb) = e-'Llnl 

A - 1  
cosh p = - 

2w 

K(1+2W e-CL)=A (12) 
where A = Abs,  and one must have p > 0. One can show that the appropriate solution 
Abs(@, K )  exists provided K > 1, and satisfies Abs(@, K )  > 1 + 2 w .  (The explicit form of 
Abs is complicated and is not reproduced here.) The continuous spectrum eigensolutions 
exist for any K, and cover the range 1 - 2w S A S 1 + 2w, for 0 S q S n-. Thus, A,,, = Abs 
for K > 1, but A,,, = 1 +2w for K d 1. (At K = 1, the bound state merges with the 
continuum.) 

In 3 ~ ,  the form of (7) suggests that the m dependence of the right eigenvector 
elements Vnm is of the form qnm = A,, e'@" + Bn e-iQm. However, one can show that 
the form of the vector W, entering (8), for a dangling-end chain, or a chain with its 
last step ending at the substrate ( y = O )  at any z, ensures that only the Q=O states 
contribute. The calculation then becomes similar to the 2~ case. Specifically, relations 
(1 1) and (12) are replaced by 

A-1-2w 
2w 

cosh p = 

K( 1 +2W +2W e-@) = A. (14) 
One finds that the bound-state solution exists provided K > 1, with A,,, = Abs(w, K )  > 
1 + 4w. For K S 1, the q = 0 continuous-state eigenvalue is the largest, thus A,,, = 1 + 4w. 
(The 0 d q d n-, Q = 0 eigenvalues cover the range 1 d A d 1 + 4w, in 3 ~ . )  

Equation (9) can be reduced to relatively simple forms both in ZD 
4 K 2 W 4 =  (1  -WK)(2K - K O  - 1) (15) 

and in 3~ 

4K2W4= ( 2 W 2 K  + W K  - 1)(2W2K + W K  -2K + 1). 

These relations define w , ( K )  for K > 1; see figure 1. For K d 1, however, relation (9) 
has no K dependence. Therefore, we get constant values, W ~ ( K  G 1) =f for 2D and 
Q(m- 1) for 3 ~ ,  as shown in figure 1, which are, in fact, the same values as for the 
impenetrable surfaces. Note that, for K >> 1, 

for 2D 
1 2  =--< - o ( ~  - 5 )  
K K  
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K 

Figure 1. Phase diagram for the adsorption-desorption transition. The vertical broken line 
indicates the boundary of the adsorbed-chain regime at K > 1.  The values of W,(K 1 )  
are f and i(./r'i- 1) for 2D and 3D, respectively. 

For fixed K ,  the form of the singularity of 2 in (8) as w + 0, defines the critical 
exponents y l ,  for chains with dangling ends, and yll, for chains ending at the surface, 
via 2 - [ w , ( K )  - or [om( K )  - ~ ] - ~ 1 1 .  In the adsorbed regime ( K  > l), the bound 
state dominates, and we get y1 = yI1 = 1. In the desorbed state ( K  < l),  a careful analysis 
(not detailed here) of the small-q eigenstate contributions to (8) yields y1 =f, yll  = -$, 
identical to the impenetrable surface results (see Privman et a1 1988). On the borderline 
( K  = l), we get the multicritical values y1 = 1, yll  =f. These values are new and, 
interestingly, satisfy the scaling relation 2yl - yI1 = y + v,. , with the bulk values y = 1 
and vI = 5, as advanced by Privman et al (1988), inspired by the isotropic scaling 
results (see Binder and Kremer 1985). 

The adsorption ratio P ( K )  can be calculated by using relation (5). The results are 
summarised in figure 2. For K >> 1, we have 

6 8 10 . . .  p ( K )  = 1 _-_---- 
K3 K 4  K 5  

2D 

2 12 86 
P ~ D ( K )  = 1 . . . .  

K K 2  K 3  

In both cases, P ( K )  vanishes linearly at the sharp adsorption threshold, at K = 1, which 
is a typical mean-field (Gaussian) behaviour (see, e.g., Hammersley et a1 1982). These 
authors presented numerical evidence for the general validity of a K = 1 threshold for 
all d b 2, for a large class of symmetric adsorption models. Near the transition, the 
pinning in 3~ is stronger than in 2 ~ ;  see figure 2. However, for larger K values, there 
is a suppression of adsorption in 3 ~ ,  reminiscent of a similar effect for impenetrable 
surfaces. 

In summary, we have presented directed SAW model results for the polymer 
adsorption at penetrable surfaces, indicating the existence of the adsorbed state for 
arbitrary weak attracting interactions, in 2~ and 3 ~ .  In either dimension, P( K )  vanishes 
linearly at the transition though the detailed K dependence is basically different 
throughout the adsorbed region. 
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Figure 2. The fraction of adsorbed monomers, P ( K ) ,  in ZD and 3 ~ .  
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